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Shuttle Contamination Modeling: The Plasma
Wave Field of Spacecraft

1. INTRODUCTION

Shuttle and other low altitude Earth orbit spacecraft move through a medium

9 3

that is characterized by a neutral number density of about 10° cm ™~ and an ion den-

sity of 104 - 105 cm-3. Typical collisional mean-free paths are on the order of
kilometers or greater, precluding a strong collisional interaction with the space-
craft which would produce collision-dominated waves and shocks. The long mean-
free paths also mean that the interaction between the ambient ions and neutrals is
weak on the scale of kilometers, so that the ions may be treated as a collisionless
plasma on this scale. Typical temperatures at shuttle altitude are on the order of
1000 K, so that the electron thermal speed is on the order of 100 km/sec, about
an order of magnitude less than the Alfven speed. As a result, the plasma may be
treated in the cold plasma approximation. A spacecraft moving through such a
cold, collisionless plasma can be expected to produce waves and shocks or shock
like structures,

Typical phase and group velocities of cold plasma waves are on the order of
the Alfven speed. As such, shock waves could be regarded as unlikely, because

the spacecraft velocity is a few kilometers per second, quite small compared to

(Received for publication 13 November 1985)
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the wave speeds. However, cold plasma waves range from almost isotropic to
quite anisotropic. For some wave modes, the phase or group velocity goes to
zero in certain directions with respect to the background geomagnetic field, L
The possibility exists that these modes can be shocked by any spacecraft velocity,
no matter how small,

The interaction between spacecraft and the ambient plasma has been investi-
gated by Drell et a13 and by Barnett and Olbert. 4 Drell et al showed that space-
craft could produce Alfven wings, a steady Alfven disturbance extending away from
the spacecraft. Barnett and Olbert have recently extended the analysis to include
all plasma waves, although a written report is not yet available.

The purpose of the present paper is to describe the wave and shock structure
of a spacecraft moving through a collisionless cold plasma. The focus of the work
will be the spatial properties of those waves, produced by the interaction of the
spacecraft with the ambient plasma, which can propagate to great distances from
the spacecraft and can form shock-like disturbances. These waves, unlike waves
which propagate isotropically, can propagate only within sharply defined spatial
regions., Our methods lead to definite predictions for (1) the frequencies of waves
which can propagate to large distances from the spacecraft, (2) the directions
within which they can propagate, (3) the wave power spectrum around the space-
craft, and (4) predictions of shock-like disturbances.

An important restriction of our results should be mentioned here. We use
essentially two-dimensional methods throughout, The formalism involved in the
three-dimensional problem is sufficiently complicated that, without the two-dimen-
sional formulation as introduction, the results are essentially unreadable. Quali-
tatively, a two-dimensional treatment is no great impediment. The typical proper-
ties, exemplified by the characteristics, are similar in three dimensions. How-
ever, the quantitative details should be regarded and used with a certain amount of
discretion; the details can be expected to change in three dimensions.

One motive for this work is to begin a fundamental investigation of the inter-
action of spacecraft with the plasma environment. Such an investigation is neces-
sary to treat a wide range of issues, some of traditional importance, some newly

1. Stix, T.H. (1962) The Theory of Plasma Waves, McGraw-Hill, New York,
2. Musielak, Z,E. (1984) M,I, T. Center for Space Research Report No.
CSR-TR-84-3.

3. Drell, S.D., Foley, H. M., and Ruderman, M, A, (1965) Drag and propulsion
of larpe satellites in the ionosphere: An Alfven propulsion engine in space,
J. Geophys. Res. 70:3131,

4. Barnet, A., and Olbert, S. (1985) Radiation of plasma waves by a conducting
body moving through a magnetized plasma, submitted to J. Geophys. Res.
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emerging. These issues can be broadly classed under two main headings: space-
craft charging and spacecraft contamination,

Spacecraft charging issues include charging of the spacecraft itself, wake
formation, and density enhancements in ram. These are all affected, at least in
principle, by plasma waves and turbulence. A particularly pressing issue is the
interaction of the wake with waves and turbulence and the consequent effect on
charging.

Spacecraft contamination issues include spacecraft glow, ionization of high
density contaminants of spacecraft origin, and, possibly, extended plasma radia-
tion processes, While the present work cannot hope to address all of these topics,
it should at least provide the basis for addressing several of them, including ef-
fects of waves on charging and the evolution of plasma clouds.

A second motive for this work is to provide the mathematical and physical ba-
=i for modeling of the spacecraft interaction, Current efforts are largely limited
to purely numerical work (for example, the NASCAP and POLAR codes) because
of the intractability of the physics as well as the complications arising from the
geometry of real spacecraft. These codes are typically unwieldy and limited by
the simplitving assumptions necessary to produce a computer program that runs in
a finite length of time.  If one contemplates, as we do, computer modeling of a
wide range of spacecraft interactions, including charging, contamination, surface
chemistry, chemical reactions, molecular transport, ionization processes, and
the formation of plasma waves and turbulence, while perhaps including the effects
of charged particle beams, the probability of success with a purely numerical ap-
proach appears to be negligible; the reason one cannot see the light at the end of
the tunnel is because there is no end to the tunnel. The approach that we advocate,
and that has had reasonable success in the development of the NASCAP and POLAR

codes, is to reduce each part of the problem to manageable proportions using ana-

Iytical techniques where possible. This paper, we hope, represents a contribution

IR
FAVATARA

to that process,

In the following sections, we will treat cold plasma waves in a homogeneous

I} 7’. 'f

medium directly from the point of view of the governing differential equations.

s

From the equations, we will determine the characteristics that govern wave prop- Y
agation and show that there are three different frequency domains in which waves R
can propagate to large distances from the spacecraft. The propagation of discon-
tinuities is discussed in terms of and related to the characteristics. The relation
between cold plasma resonances and the characteristics of the differential equa-
tions is pointed out, and a physical picture of the characteristics as carriers of
discontinuities is developed from the plane wave picture. Solutions of the cold

plasma equations appropriate for localized disturbances are then determined ana-
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lytically; they provide a prediction of the power spectrum of fluctuations far from
the spacecraft. Finally, applications to the spacecraft environment are discussed.

2. COLD PLASMA WAVES

The treatment of plasma waves begins with a standard approach to the prob-
lem. We include it to establish approach and notation. The aim is to write partial
differential equations governing waves in a cold plasma. In particular, we shall
reduce the problem to a fourth order partial differential equation for a magnetic
field fluctuation,

The linearized cold plasma equation of motion is

(8/01)8Vy = (e /mg)8E + (e /myc) 8V x B (1)

where @ indicates the species of particle, ey is its charge, mg its mass, 6.\70 is
the bulk velocity of the species, df‘ is the electric field, § indicates fluctuating
quantities, and c is the speed of light. The solution for 6.\7 with a harmonic time
dependence, O/0t = -iw, is

8V, = (eq/mg)iwlw?) JE (2)

- . - - 2 2

8V = (eq/me)wiE; + SEx Q) / (W - 2,7) (3)
where || and } mean parallel and perpendicular to the background magnetic field,
and the gyrofrequency of species o is defined by

- -

Q= -eqB/(mge). (4)
We note that the frequency W is defined in the proper frame of the plasma (the
frame in which the background plasma is at rest) and that the frequency measured

-

by an observer moving through the plasma with a velocity U is w'= @ k-f, where
:is the wave vector.

The current density, defined by

67 TyngeadV (5)

where nyis the number density of species o, Is
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+ (1/4m[zawpazga/<u2 - Qe b xE (6

where

2 _ 2
Woor " 4Tnyeq /mgy

(7)
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is the plasma frequency of species o, the plasma frequency is

2 —

w?:Y w 2 (8)

A
and b = E/B is a unit vector in the direction of the field. Inserting Eq. (6) into the

combined Ampere-Faraday Law

N
> s s e 2= 2 2
~ Vx(V x dE) = 4mmiw/c”)8J + (W /c”)OE (9)
A we obtain
i > > - - - A
l Vx(V x 8E) = €,6E, - €p0E, - €yb 0E (10)
:: where
" 2 2., 2
I ‘0 = (W -wp Y c (11)
- 2, 2 2, 2 2
- €p = -w et -pra [w” - Q4] (12)
: ., 2 2 2 2

EH = -(IU/C )Ewpa Qa/((d - Qa ). (13)

STEK L

. Our approach will be to write the differential equations in a homogeneous

- background plasma. To do this, we assume that the magnetic field is

-

, -~

1 B = (0, C, Bz) (14)
g and
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éloy=0 (15)

and that the coefficients € are constant. Eq. (15) limits the subsequent analysis to
two dimensions; this approach sacrifices generality for the sake of clarity. The
assumption of constant magnetic field is consistent with the nature of the space-
craft interaction; the spacecraft is a small object in a large scale (on the order of
one Earth radius) magnetic field. The assumption of constant €, which implies
that the number density is constant, is not very good; the density changes by or-
ders of magnitude in a large region occupied by the spacecraft wake and perhaps
in a smaller region in ram. As a result, the detailed results of wave propagation
will be limited to a region outside the strong density gradients near the spacecraft.
It is not difficult to generalize our differential equations to variable density, but
the possibility of solving the equations analytically appears to be remote. With

these assumptions, FEq. (10) becomes

-9,0,0E -8, 0E) =-€ 0F, - €, sz (16)
2 d 2 St - - € .

-8, -6, Bg=-€y oL - € 6Ey amn

ax (6261~:x ~ 6X61-17> € ot (18)

where Gi means a'axi. Using the Faradav relation
atdny = -uuény = -cl@ 8T - axéEz) (19)

where Gt mean- 091, F.g=. (16) through (18) can he written

liw ("67614-\‘ - (},él-ix - fHél'y 20)
2.8 7. € S - € bn 2
<6X ©0,7 - € ()I.\' T €y }'x (21)
i . 3 )9
(w19 01 €01 (22)
Fgs. (200 and 22y can be comtbined to vield
[a;,.- - L€y, 6(,’6\;' - ‘}‘]0})’)- Pl W eHazél:_\' 23
6
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or, because

(c/iw)aszy = -6Bx, (24)

2 2 .
(8,° - (ep/ea,” - €5 ]Msy = €, 0B (25)

Similarly, Eq. (21) camr be written (after differentiation with respect to z)

2
4

02+8,%- €068 - (1+¢,7182%6B (26)

y

where Faraday's L.aw has been used to eliminate derivatives of oE.
For future reference, we should like to state that Eqs. (25) and (26) can be
rewritten in the form

2 2 ‘142

[8,% - (eplen)d,? - €,)a= e 1+ €710 %8 2N
2 2 B

(0,°+0,” - € - -€ (28)

where ar and 8 are defined by

o

a+ epleo) 6By - leyley) 6B, (29)
B=0+ €pl€y) 8B+ (€,/€y) dBy. (30)

IXgs. (25) and (26) or Egs. (27) and (28) are a pair of coupled second order
partial differential equations that govern linear waves in cold quasineutral plas-
mas,. [t is instructive to consider the low frequency limit of these equations. In
the limit that w - 0, it is easy to see that

€p = -2l v v, B (31)
where
Vy B/ (47 p) (32)
7
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is the nonrelativistic Alfven speed, and

€ <4mu/cmZanaoa =0 (33)

because of the quasineutrality of the background plasma, which we here assume,

In this case, Fgs. (23) and (26) uncouple, and can be written

2 2 :
(0, - tep/€g)a,” - €,]81, =0 (34)

9

(0

X

) 622 - fp) 6”)( = 0. (35)

These can be recognized as the Alfven mode and fast mode, respectively. The
Alfven mode propagates approximately along the field, while the fast mode propa-
gates isotropically,

Iigs. (25) and (26) can be reduced to a single equation:

2 2 2 2
8, az -€,) (9, - (‘P/‘o)ax - ep]dny

2 142 _
tE (1 req ax )ony‘o (36)

I'g. (36) is a single fourth order equation governing cold plasma waves.

3. THE CHARACTERISTICS GOVERNING WAVE PROPAGATION

BBy a standard mathematical procedure, the characteristics of the differential
Fq. (36) can be determined by solving a first order partial differential equation

Qe 0 37)

(¢f. Courant and Hilbert, 6325).

-

5. Courant, R., and Hibert, D. (1962) Methods of Mathematical Physics (Vol. 1I),
Interscience, New York.




In the case of Eq. (36), the characteristic equation is

6,2+ 8,2[8,° - (€pleg)d, 2] = 0. (38)
There are two solutions for characteristic surfaces:

¢x2 +¢2%=0 (39)
and

¢ 2= (e,/e9> (40)

Eq. (39) yields only imaginary surfaces. In the terminology of partial differ-
ential equations, it means that the problem is elliptic., Physically, it means that
the waves associated with these characteristics propagate more or less isotropic-
ally. An example of completely isotropic propagation is the fast mode wave, de-
scribed by Eq. (35). Because of the isotropic propagation, the wave amplitudes
can be expected to fall off rapidly from a confined source. The falloff for fast
mode waves is 1/r2. While the falloff will be less rapid for more anisotropic
wave modes, it can be expected to be significant.

Eq. (40), on the other hand, has real or imaginary characteristic surfaces
depending on the wave frequency, For frequencies for which the characteristics
are real, the problem is said to be hyperbolic., The waves associated with real
characteristics do not propagate isotropically; they are subject to shocks and dis-
continuities. In this linear problem, the shocks or discontinuities propagate only
along the characteristics, as do any discontinuities in the derivatives.

Even when Eq. (40) has real characteristics, there are real and imaginary
characteristics in the same equation. The effect of this coupling will be examined
later when we obtain explicit solutions. Except to the extent that the waves asso-
ciated with imaginary characteristics are driven by waves as ociated with real
characteristics, they will not be treated in detail in this paper. Such waves would
be worth a separate investigation.

The solution of Eq. (40), obtained by the method of characteristics, is @ =
constant along the surfaces defined by

dx = ¢ r’(ep/eo)dz. (41)

The coefficients € and €p can each be positive and negative as a function of fre-

IR TR RSO
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o quency. The condition that the characteristics are real is t,t,: 4
” €p (W/eglw) > 0. (42)

-

. For a plasma composed of a single type of positive ion, a simple analysis gives

*. .
N the signs of €p and €y°

0 <W<Q ;ep< 0
Q < W< Qiep >0
Qc<¥<g, ;ep<o
Q <Y <Quciep >0
Quc<W<® ;¢p<0

a b

.-: 0 < W < Up ; fo <0
e, Here, Qi and 'Qe represent the ion and electron gyrofrequencies, while
o 2 . 2 2 2 2 2 2 _ 22
Quc,Lc = WA+ Q7 + 0 " V(R -7 +wp " -wy)

2 2
* 4w W 1] (43) N
N RS
X RPN
o are the upper and lower cut-off frequencies. L., and QLC are just the zeroes of c?,{'f{
T €. SN
N P O |

Table 1. Frequencies for Which There Are Real

- Characteristics

£ 0 Cw( Q real hyperbolic
Q [(w < Q¢ imaginary elliptic

- Qic<w < Q real hyperbolic

-:. 'Qe (w < wp imaginary elliptic

B wp Cw < -QUC real hyperbolic

Quc (w (= imaginary elliptic
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Based on these results, the frequencies for which there are real characteris-
tics can be determined (Table 1). We have tacitly assumed the ordering
.Qez << wp2. typical of the low Earth-orbit environment, There are three re-
gions that can support shock-like disturbances: (1) Alfven--below the ion gyrofre-
quency, (2) whistler--between the lower cutoff frequency and the electron gyrofre-
quency, and (3) upper hybrid--between the plasma frequency and the upper cutoff
frequency. In these regions, the angle between the characteristics and the magne-
tic field is

6- :ttan_lp/(fpléo). (44)

The angle @ is shown in Figure 1 for a plasma typical of low-altitude Earth

90 r
60 [
3 i
w
w
&
e} |
a
[« ]
30 |
-
L
L Lﬁ’} o 1 1 1 1 !
| 102 104 Toks (08 10'0

w(SEC™H

Figure 1. The Angle Between the Characteristics and the \agnetic
Field, Gi\'('P as a Function of Wave Freauency, for a Hydrogen Plasma
Withn = 107 em™ and B 0,306
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orbit: a hydrogen plasma with n = 104 cm-3 and B = 0,3G. In order of increasing :.,. Y
frequency, the three curves represent the characteristics associated with the Alf-
ven, whistler, and upper hybrid regions, At very low frequencies, the angle is
essentially zero, the well known result for Alfven waves: Alfven waves propagate
only along the field. The angle broadens as the frequency increases and becomes
90° at the ion gyrofrequency. This behavior repeats above 'QLC: the angle is zero
at QLC and increases to 90° at the electron gyrofrequency. Above the plasma fre-
quency, the behavior is reversed: the angle is 90° and decreases to zero at_QUC.

The discussion of the behavior of the waves with respect to these angles is deferred
to «a later section.

3.1 Propagation of Discontinuities

The above discussion of the existence of discontinuities originated with the
formal mathematical treatment of the characteristics, which is quite abstract at
best. The present section is designed to show the relation of the characteristics
to the discontinuities. The treatment is not general, but is much more direct and
physical.

To treat discontinuities, we start with Egs. (16) through (18) for the electric
ficld components. It follows from Eqgs. (16) and (18) that

0, (- f},dEx + €H6Ey) + az(eodEz) = 0, (45)

This is a divergence equation, Discontinuities can be treated by integrating over

a Gaussian pitlbox surface enclosing the discontinuity and using the divergence
theorem

SPRa’x - $A.Rda. (46)

For a jump discontinuity, Eq. (46) shows that the normal component of the vector
-
A is continuous:

(A ] o “n o
The bracket notation is defined by

(Ql=Q, - @ (48)

where Q is any quantity and 1 and 2 refer to the two different sides of the discon-
tinuity. 8

12




Applying this method to Eq. (45), we obtain

n[-€plb, + €40E ] n le,or,) - 0. (49)
Assuming that the coefficients € are continuous, we have

-n_ €, [6l-lx] tn €. [dliy] v nzeo[él'lz] = 0. (50)
In a similar manner, it follows from Faraday's l.aw (see Egs. (19) and (24) that

n, (68 ]-n [6r,]=0 (51)

[61-:),] = 0. (52)

The only solutions of 1gs. (50), (51), and (52) for which the electric field discon-

tinuities do not vanish are given by
n "€ -n "€ =0 (53)

oaopr

n, V(€4 €N . (54)

The normal vector is perpendicular to the surface of discontinuity, and, by
5. (44), perpendicular to a characleristic surface. It follows that any discontin-
uitics in the electric field must lie on a characteristic surface. It further follows

that there are no discontinuities at all unless the characteristics are real,

3.2 Phase and Group Veloeities

Since the methods developed here use the same assumptions as a more ortho-
dox plane wave treatment of plasma waves, it is to be expected that the important
features should be the same, This is the case in several respects. In particular,
the characteristics can be identified as the resonance lines of the plane wave pic-
ture. The purpose of this section is to provide a physical picture of the charac-
teristics as resonances to aid in the development of the idea of the characteristics
a5 carriers of discontinuities,

The dispersion relation of cold plasma waves can be obtained from any of the

13
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principal equations: Egs. (16), (17), and (18), Egs. (27) and (28), or Eq. (36). It
is convenient to write it in the form

Dw, ¥)=a/k?+b/k2 +c=0 (55)

where the coefficients are defined by

2 2

a= €° (GP +€H ) (56)
2 2 2 .2
b=2€ € cos" Y+ (€ €p - €57 - €y )sin® s (57)
c= € coszw- € sinzllf (58)
0 P

and ¥ is the angle between ¥ and B.

To investigate the relation of resonances to the characteristics, we inquire
about the behavior of the phase and group velocities when the wave vector is per-
pendicular to the characteristics. Ik is perpendicular to one of the characteris-
tics, defined by Eq. (44), then

2., 2, _
tan“yY = 1/tan” 6 = 60/ €p (59)
so that
c=0 (60)

which shows that the characteristics are resonance lines (see Stix, p. 14) and

2

. .2
b= p - €y ) eg + € (61)

GO(EOGP + €

Then the roots of the dispersion relation are

1/k% = 0 (62)
and
1/x2 = -b/a. (63)
14




AT EER ol B Al g e s S

o RN R

- - v ¥ 3
r.."- s .I

L.

AR

o

A

LEEN
PP LA AR

We conclude that when-k’is perpendicular to a characteristic, the associated wave
vector, given by Eq. (62), is infinite and the phase velocity is

V., =wlk=0. (64)

ph

Let us pursue the same line of thought with the group velocity. The group
velocity is defined to be

v . ® -(@D/dk)/(OD/d w). (65)

The numerator is

D/ = 8, (3D/K) + (&, /)@D/JY) (66)

-~
where the unit vectors 'e‘k and gw are parallel and perpendicular to k, respectively.
Evaluated at c(y/) = 0, so that k is perpendicular to a characteristic,

Ve 2b/(k30c/@w) = 0 (67)

vV = -(0c/d¥)/(kBc/Ow) = 0 (68)
gy
so that the group velocity vanishes, At the same time, the group velocity is along

the characteristic

, . 2 .
ng"’gw' 2b/(k“Qc/OY) = 0. (69)

From this, we may draw a physical picture of the role of the characteristics.
Plane waves emitted by a localized source, for which :is perpendicular to a char-
acteristic, do not propagate across the characteristic, Both the phase velocity
and group velocity vanish, and so the waves may accumulate along the character-
istic. For a sufficiently steady situation (long-lived source plus steady back-
ground plasma), the waves may build up to any arbitrary amplitude within the con-
text of the linear approximation. Because the points in space just across the char-
acteristics are not causally related to those on the side occupied by the disturb-
ance, this disturbance may form a shock wave of arbitrary amplitude. Since the
plane waves are supposed to extend an indefinite distance from the source, the

shock wave can extend to large distances from the source.

15
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From the above discussion, we can make clear what we mean by ''shock-like
disturbance, ' a term used throughout this paper. An observer passing through a
characteristic or resonant surface associated with a particular frequency would
measure a sudden jump in the power at that frequency: the power would be zero on
one side and finite on the other. However, since the characteristics themselves
are frequency-dependent, the disturbance associated with a band of frequencies
has a finite width: the medium is dispersive. Such a disturbance is quite unlike
the Cherenkov cone or sonic boom associated with nondispersive light waves or
sound waves {(or fast mode waves, for that matter); these shocks show a sudden
jump in power across a single shock surface at all frequencies.

Eq. (69) will be important in the analysis of analytic solutions. It can be

written as
- 2
vgk/ng~ vieg/ep) €,/k (70)
where
€ =l e~ €2 € ) e, +ey) (1)
* 0P P H 0 P

From Eq. (70), it follows that when €, < 0, the group velocity is inside the char-
acteristics, while when €, > 0, the group velocity is outside the characteristics.
"Inside'’ and "outside' here mean "toward the field direction" and "away from the
field direction, " respectively. This distinction will lead to two separate classes
of shock-like disturbances caused by spacecraft corresponding to spacecraft ve-
locity essentially across the field and along the field, respectively. There will
also bte two different ways for waves excited by spacecraft to spread: along the
field and across the field, respectively.

The results of this section can be illustrated in the limit of low-frequency
waves for which solutions can be obtained analytically. We state the following
without proof. In the limit of low frequency, the characteristics are determined

by the equation

2 2, 2 02 2,2 ]
[67 - (W w 19, - w IV, ]6By—0 (72)

gm
where the geometric mean frequency (see Stix.1 p. 32) is defined by

w. 2.2, {(73)



The phase velocity is

w?/k? - VA2 (coszdf - (wzlwgmz) sinzw]. (74)

The directions of the group and phase velocities are related by
tanys_ = -(wzlw 2) tany. (75)
g gm

The square of the group velocity is

v “ = VAz[coszw

2, 2, . 2 4
- . 76
g g © Wy T sin“Y 1/ cos” ¥ (76)

g

The phase velocity goes to zero at

tanw=twgm/w (7

and the group velocity goes to zero at

te - . 78
anlllg tu/wgm (78)
Because the angles between the characteristics and field are
R -1
6 - ttan (w/wgm). (79)

the main results of this section follow easily. When-lris perpendicular to a char-
acteristic, the phase velocity is zero [Eq. (74)], the group velocity is along the
characteristic [Eq. (78)], and the group velocity is zero [Eq. (76)]. The phase
and group velocities are shown in Figure 2, along with the characteristics. We
show w/wgm = 0, 2 for purposes of clarity. In fact, the low-frequency approxima-
tion used requires W< _Qi or w/wgm << y’(me/mi) ~ 0.023. The magnetic field
in the figure is vertical, as indicated by the arrow.

We note that Eq. (76) is different from the results illustrated by Musielak. 2
His low-frequency group velocity loci do not go to zero at any angle.

17
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IFioure 2. The Phase and Group Velocities of Low Frequency Plasma
Waves, Given ax Functions of Ansle With Respect to the Magnetic
Field, The direction of the masnetic field is indicated by the arrow.
The characteristics are also plotted. The angle hetween the charac-
teristics and the marsnetic field is exaggerated for clarity.

1. PROGRESSING WAVE SOLLTIONS

With the discussion of the characteristics and the propagation of discontinui-
ties ax backeround, we now turn to solutions of the equations, It is well known
that equations such as Fgs. (25) and (26) or (36) can Le solved by the method of
prosressins waves (see Courant and Hilhor‘t.5 Chap. VI). For the present pur-
poses, we will find approximate solutions of Egs. (27) and (28). To do this, we

look for solutions of the form

) (n) Catm
""2-.,:(;[" () (M, ¥) d (u)<n<u,u)] (80)

18
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B=¥X3 .0 ["(")(u)bn(ﬂ. v)+ 6(")<v)dn(/1. v)) (81)

where U and V are the characteristics

H=2 +y’(eolep)x (82)
V=1z ~ V(Eolep)x (83)

[see Eq. {(41)]. In Egs. (80) and (81), 6(0)(x) is the Dirac delta function, 6(n)(x)

is its nth derivative when n < 0, and

6(")(x) =x"/nl, x> 0
= Q, x< 0 (84)

when n > 0. RBecause of the Fourier transform in time, the delta function indi-
cates a source oscillating at frequency w. Because of the form of the expansions
(80) and (81), the disturbance is assumed to vanish outside the characteristics.

The results to be derived below hold only for a source at rest in the proper
frame of the plasma. This restriction arises because of our treatment in config-
uration space rather than Fourier space. While the Doppler shifts associated
with moving sources are easily treated in Fourier space, the reversion to config-
uration space represents an intractable analvtical problem. It is possible to treat
it numerically, however. Remarks about moving sources are deferred until later
sections,

The treatment that we have outlined does not properly treat the source cur-
rents associated with the spacecraft interaction that cause the fluctuations. To do
50 here would unduly complicate the presentation. The equations with source
terms are listed in the Appendix, along with a discussion of the modifications re-
quired to use them.

Substitution of Egs. (8C) and (81) into Egs. (27) and (28) followed by the equat-

ing to zero of the coefficient of each 6‘“’(u> leads to the recursion relations

by - 2(6,, - 6,,)b0 =0

¥
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2
(1+ € /ex)[b, +2(8, - Byb; 4 +2(8y - 8,)°by 4]

- Epb, ot €pa o =0, 1> (87)

-(GH/(p)b1 + ay 39 " 2(€H/€P)(6ﬂ - OV)bo =0 (88)
-(eHIGP)bi +6U a;_ '2(‘H/€P)(aﬂ -9, _+ 9, ayai_z

- €pag gy €y g * (8 -8, by =0, i> 1 (89)

The recursion relations for c, and dn are entirely similar and can be obtained by
interchanging a and ¢, b and d, and 4 and ¥. To specify the solution, we choose

aO(O. v) =1 (90)
ai(O. vy=0,1i >0, (91)

This choice implied that & is a delta function at 4 =0, V = 0, The meaning of the
solution with these initial conditions is that it represents the manner in which the
disturbance that results from an oscillating point source propagates. The solu-
tions for these initial conditions are

a, =1 (92)
ay = €V (93)
. 2

ay, = (1/2)(e, v) (94)
a, = (17300e, 1% - [(e,.2€ e, - €,)]¥ (95)
“3 AR H P 0 P

by 70 (96)
h1 =0 (97)
h2=~(},(”/‘((o‘ ep) (98)
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b,

(- by =~ [ep € /(e + €p)] (€,0) (99)

2 b, = - [(1/2)e 0% + (2eep + 3€? - 26 D)/ (e, + €1)] (100)

. 4 H * 0" P P H 0 P

*: where

VN

X e, = (e e +e 2 € Dfe, +€,) (161)

N * o°P" P H €0 " “p’t

.~

_:' From these terms, it is possible to describe the nature of the solution. The delta

) function

: a- - =

(1 +epleg) 6By (GH/GO) éB, = &(u) (102)

;;l lies along the characteristic line ¢ = 0, that is, along z = - y’(eo/ep)x. There is

= no corresponding delta function in 8- (1 + Epléo)de + (éH/eo)dBy. There are,

A however, delta functions in hoth 6 B_ and éBx.

. The coefficient ay represents the jump in o across M4 = 0, This jump, which
is initially zero (because of our choice of initial conditions), erows linearly with
distance away from the source. Apain, there is no jump in 8, but there are

" jumps in both éBy and 6B‘(. The coefficient a, represents the jump in the first
/ derivative of a; it grows quadratically away from the source. The jump in the

- first derivative of 8 does not grow quadractically near the spacecraft, however,

- Eq. (98) shows that the jump in the first derivative of 8 is discontinuous, even at

. the origin.

= The nature of the solutions is that of coupled waves. The coupling, as men-
tioned in connection with Egs. (34) and (35), is determined by €5 When GH goes
to zero, the solutions for the a and bn are

- n N

) a = (ePV) /n! (163)

- h,=0. (104)

" Summing the series (86) and (81), we have

s o=2y" n 2

A Zn=o(‘p‘“” [n!)

s

. = 2JO[./(-2ePpu»] (105)

N .
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a where Jo(z) is the Bessel function and
Y . B=o0. (106)
£
o
, “.‘: The factor of 2 in Eq. (105) appears because of the contributions of the <h in
L}

w, Eq. (80). Eq. (105) is the well known fundamental solution of Eq. (34).
) From this discussion, it appears that the first few terms of o are the same as
SY
:.'_'
pos
::Z a=J,[yV(-2¢, 4], €, < 0 (10m)
. and that modifications appear because of mode coupling in ags b2' and higher order
e terms, The former result is easy to prove. By eliminating the low order terms
\ in the recursion relations, so that they reduce to
o
i -

. (1+€)/€p)b; + €pa, o+, .. =0 (108)
‘:'_:: a; _q ~(€yleplb, - €pa; o +. .. =0, (109)
: one immediately obtains
- Oy3i-1 7 €4Pj-2 " - - (110
:':; so that o is
-'-'
a=Jo[V(-2eun] +. .., €, <0 (111)
7
1'__ where the ellipsis represents the remaining terms that arise because of the cou-
'_::- pling.

~ In contrast to the low-frequency Alfven waves, the solution for higher fre-

- quency waves depends on the sign of €,. If €, > 0, it would appear that
e a=1 (Ve un]+ €, >0 (112)
= Iy «H e €y
where lo(z) is the modified Bessel function, The asymptotic form of Eq. (112) for
5
e large argument is
‘...l
T
ey
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asel /yemd) ..., e, >0 (113)

where & = -2€,puv» which would suggest an exponential increase in the wave ampli-
tude with z.

Such exponential behavior presumably does not occur for the following reason:
In Fq. (70), we saw that the sign of €, determined the side of the characteristics
upon which the waves could propagate., If €, > 0, the waves propagate outside
(away from the field) of the characteristics, while the form of Egs. (80) and (81)
assumes that the disturbance propagates inside and vanishes outside. The intui-
tively correct result is obtained by replacing the delta functions of Egs. (80) and
(81) by d(")(-y) and 6(n)(—y) if €, > 0. With an assumed solution of this form,
the sign of 4 or VY (hut not hoth) is flipped in each expansion with coefficients a,

and €t The result is that

o= J vz e.um) ..., €, >0 (114)

that is, the solution is of the same form as Eq. (111) but vanishes inside the char-
acteristics,

The behavior of €, in regions where real characteristics exist, is shown in
FFicure 3 for the same low BEarth orbit conditions as Figure 1. Note that €, < 0
in the Alfven and whistler regions and €, > 0 in the upper hybrid region.

It should be noted that the correspondence of "inside' and "outside' with the
sign of €, was a purcly local result; it did not determine whether the group veloc-
ity was always inside or outside of the characteristics. Because of the compli-
cated nature of the group velocity loci, and the fact that the group velocity along or
across the field is not related to €,, such a determination would presumably have
to come from a numerical search. So we are faced with the following alternatives:
Either our correspondence is correct, or the wave amplitudes can grow exponen-
tially with distance near the spacecraft., While the existence of growing waves
would be surprising, it is not impossible. Even though the driving I0 term grows
rapidly near the spacecraft, the remaining terms could easily conspire to reduce
it at great distances. Because of the hyperbolic nature of the problem, there is no
boundary condition far from the spacecraft which can be used to eliminate this so~
lution, The only apparent constraint is that the asymptotic wave amplitudes are
nondecreasing, This is essentially an energy conservation argument: If the asymp-
totic wave amplitudes continued to grow, the steady source could not provide suf-
ficient energy to sustain them. Nor could the cold plasma provide the energy, as
it is known to be stable., It would be a worthwhile exercise to look for such waves;
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. they could provide a source of extremely rapid spatial wave growth near the space- c
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Several remarks should be made about the nature of these solutions.

(1) Despite the fact that the solutions are analvtic, thev can only be regarded

se
Tat

)

as qualitative; they are presented only for the purpose of identifying typical physi-

cal features.
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light: three~dimensional solutions are delta functions, while two-dimensional solu-
tions are Bessel functions. While both have sharp wave fronts, the two-dimen-
sional solutions have trailing wakes entirely missing in three dimensions.

(3) The solutions of this section are for delta function disturbances in the
magnetic field. A better physical description would be the solutions for a delta
function current source. (For further details, see the Appendix.)

(4) The squares of the results of this section represent the spectral power
density of the fluctuations resulting from a two-dimensional source stationary in
the proper frame. For applications, the power spectral density should be calcu-
lated for specified current sources (see Appendix).

5. STEADY PLASMA STRUCTURE AROUND A MOVING SOURCE

The present section is somewhat outside the main line of development and can
be omitted on a first reading. The purpose is to develop a formal method for cal-
culating the steady plasma structure around a moving source. Because of the in-
tractable analytic nature of the result, we have computed results only in two
simple cases. However, these cases are instructive and may help the uninitiated
reader to make contact with the subject. The formal results include the entire
steady radiation field, which has contributions from waves of all frequencies. As
such, it should be able to serve as a useful starting point in future investigations.
In contrast to the rest of this paper, the results of this section are fully three-di-
mensional.

The problem that we wish to investigate is the plasma response to a source of
current moving with constant velocity, U. Let the source be characterized by a
charge density, 77, so that a point source can be represented by

T =nT= Célx - Tv). (115)

We wish to use this source current to calculate a Green's function, and so have
chosen n = 1. The Ampere-Faraday Law is

Tx(PxdE) - € 5Ej - (dmiw/ )T (116)

where the eij represent the coefficients defined in Eq. (10), Without working out
the details, one can see that the general form of the spatial Fourier transform of
Eq. (1186) is

2
A 0B, = dmiw/c)y; (117)
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where A is a matrix whose elements depend onk and €_(w). The solution for 6%
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(5 F (471 1W/ C A J. 118)

where the inverse matrix A™! is given by

(119)

3y ey T,

i
-
Here, the aij(w' k) are coefficients resulting from the inversion; they depend on w
-
through the eij(w). D (w, k) is the dispersion function; the dispersion relation is
-
D(w, k) = 0, The Fourier transform of the Green's function for this point source

is
G,(w, k) = (4miw/c )[aij(w, k)/D(w, k)]JJ.(w. k) (120)
where Ji(w, ¥) is the Fourier transform of the current density given by Eq. (115)

and is given explicitly by
(121)

-

w0 = [vyen®liw - % 0.

Then the Green's function is
G,(t, D = falkdwG W, B, (122)
After some easy steps, the Green's function can be written symbolically in the
form
(123)

G, - Tv = 0, fa%k [expife & - T} /pE.T, ¥

where 0, is an operator defined by

9 - - L -
e, = [l']/(er“c )](L"V)aij(-il'-V. -ipn (124)
- .
Note taat o \ depends on U «V through the dependence of the eij onw. Itis a compli-
Its evaluation normally involves power

coted {unction of differential operators,

series of operators,
~everal remarks about Eq. (124) are appropriate

A

26




RARAAR MoOC

a a g
{4 Ta’s's

N
2's

]
L St

PN
R )

oo

= XE

P A l"l._l’. i

(1) The wave pattern is stationary in the frame in which the source is at rest.
(2) There are two principal pieces to the Green's function: the operator 0i and
the radiation integral

R= fd k[expke X - Ttn)/p(k.T, K. (125)

(3) The radiation integral carries the fundamental information about the ex-
pansion of the wave: phase speeds, group speeds, characteristics, and disturbance
topology.

(4) The details of each wave amplitude are determined by the operator Oi'

(5) R is simply the spatial Fourier transform of the inverse dispersion func-
tion,

(6) R uepends on all wave frequencies because of the Doppler shift, repre-
sented through the dependence of D onz-ﬁ.

Eq. (123) is difficult or impossible to evaluate in any general way. We would
like to illustrate its use through a simple evaluation of R for two special cases:
(1) fast mode waves, and (2) MHD Alfven waves. To do so, we shall drop all con-
stant factors and derivatives, which are inessential,

(1) The fast mode dispersion relation is

Dw, ©) = w? - k?v,? (126)
so that
DU, B = %)% - kPv, 2 (127

To proceed, let ﬁ = (Ux' 0, 0) so that the velocity is perpendicular to the field.
Then

- - - 2

D(keU, k) ~ kx - (ky

2 2 2 2
+kZ )/ (U /VA - 1) (128)

In carrying out the transforms in Eq. (123), there are two cases to consider, I
2 2
u /VA

usual way, we obtain

> 1, D has two real roots for kx. Carrying out the transform in the

2

R~ 1YWl v, 2 -0 -y? <28 g v 2 < P rdiv, 2 -

=0, otherwise
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This represents a fast mode shock for the case that the source speed exceeds the
Alfven speed. The disturbance vanishes outside the shock cone, shows a sudden
jump at the shock cone, and is nonzero inside. This is just Cherenkov radiation

in a cold plasma.
If L12/VA2 < 1, there are two imaginary roots of kx' In this case, the radia-

tion integral is
R ~1/ [x2/0 - 03v, 3 v y? o 220 (130)

This has the same form as Eq. (129) except that there is no shock cone.

(2) The MHD Alfven mode dispersion relation is

2 = > I

-
Dw, B =w? - &V (131)
S0 that
DT T FD - &TL5 (132)

pET Bk Pk Py, 2 (133)

Fvaluation of the integrals then leads to

R ~d([8(x » Uz/V,) - §(x - Uz/V,)). (134)

This solution is just two delts functions in opposite directions along the field: they
are the Alfven wings for a point source. They are tilted by an angle tanﬂl(U/VA)

with respect to the field and lag behind the source. 3

6. APPLICATIONS TO SPACECRAFT

Up to this point, we have developed several apparently disparate approaches
to our problem, It is time to try to unify them into one coherent picture. The
main difficulty we face is to incorporate the motion of the spacecraft into our re-

sults, Aside from the last section, the results are valid only for sources which

28
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are stationary in the proper frame of the plasma. For such a motionless source,
the methods outlined above should provide a detailed accounting of the behavior of
waves and disturbances propagating away from the source.

What is required is a generalization of the characteristics that applies to the
wave field of moving sources. These characteristics should be the carriers of
discontinuities that originate at the spacecraft. The spatial methods that have
been developed above are not particularly helpful for the following reasons: The
characteristics in the proper frame do not depend on the group velocity because,
as we have seen, it becomes zero at the characteristics. On the other hand, the
spatial characteristics in a flowing plasma must have some relation to the group

: velocity. Another way of looking at it is that the angle of the characteristics in

; the frame of the moving source must be determined by the ratio of some speed in
the problem to the source speed, U. This is true in any frame; if the source is
stationary in the proper frame, the source velocity and the group velocity associ-

ated with the characteristics are both zero.
The appropriate generalization has been known for a long time (see Jeffrey

and Taniuti.6 p. 186). If Vg - ﬁ is tangent to the group velocity surface, then the
direction \7g - U is characteristic:

e TEEENS A 4 7

R ATRIT A
$ A
" - - - »._'-' \:.\}‘
: (V- 0)-Vo-0 (135) Il
AESLRCRE
. DGO SR
. S
l that is, the convected group velocity is parallel to the characteristic surface. The T
RY. .
§ construction of the characteristics is shown in Figure 4; we have used the group N AN
. velocity of Figure 2 in this example. The magnitude of the spacecraft velocity has }';::'-‘:‘;
L 7% Y R
g been greatly exaggerated for clarity. :';:' :{_.:
The characteristics determined in this way satisfy the usual requirement that -:-:-,ic"-_'
' characteristic surfaces be the carriers of discontinuities. This is easy to see - 53 '5
; from the significance of the group velocity. The characteristics here are just the SSNERN
envelope of the group velocity and so determine the limits past which a localized ) .
fluctuation cannot spread: inside the characteristic surface, the disturbance does
. not vanish, while outside, it does. R
i For further details, see Jeffrey and Taniuti. 6 For the present purposes, it
. is sufficient to note the following: Spacecraft velocities are about 8km/sec or less B ,
while typical group velocities are on the order of the Alfven speed, several hun- N }_:-
dred kilometers per second or more, Unless there are group velocities less than ::—
- the spacecraft velocity, then no new qualitative features (that is, new characteris- RSN )
WO
tic surfaces) will occur. In that case, the analysis of this paper can be used to sieter et
AR
6. Jeffrey, A., and Taniuiti, T. (1964) Non-Linear Wave Propagation, Academic el
Press, New York, LGN R
sl
R
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Figure 4, Construction of the Characteristics for a Moving Source. The
polar plot is the group velocity locus; the magnetic field direction is indi-
cated by the arrow. The source velocity is indicated by U

determine all of the shock-like disturbances, It should be emphasized, however,
that larger source velocities would introduce qualitatively new characteristic sur-
faces and the associated shock-like disturbances; an example is the fast mode
Cherenkov cone,

In the limit of small spacecraft velocity, it is easy to see the qualitative na-
ture of the changes in the characteristic surfaces and to discuss the nature of the
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spacecraft interaction associated with them. Let us discuss the qualitative nature
of the changes for two cases: €, < 0 (Case 1) and €, > 0 (Case 2).
Case 1: If the spacecraft velocity is across the field, shock-like disturbances

AN
can occur., Ahead of the spacecraft, the changes will be small. There will still :E:&.::}
be a well defined characteristic surface past which disturbances of a given fre- :—:-:'-:;:::
quency cannot spread. The angle this surface makes with the magnetic field will :‘."'f;:q":n
still be given to high accuracy by Eq. (44). Behind the spacecraft, the changes ae va‘.‘.';.

are more significant. Because the waves with zero group velocity in the proper v
frame do not propagate through the plasma, once they are produced, they will form
a trailing wake behind the spacecraft. This is simply a statement of the fact that
there is no characteristic surface in the spacecraft wake; unlike the case of a sta-
tionary source, there are no solutions in the wake of Eq. (133) for n, as can be
seen from Figure 4. Even though there are no trailing characteristics, the solu-
tions obtained [Eqs. (92) through (100)] should still be reasonably accurate, ex-
cept that the trailing disturbance will approach zero rapidly but not vanish,

If the spacecraft velocity lies within the characteristics, no shock-like dis-
turbances are possible. For example, if the velocity is parallel to the field, the
disturbance propagates (in the spacecraft frame) ahead of the spacecraft at several
hundred kilometers per second and behind the spacecraft at the orbital velocity
(several kilometers per second).

While the formal results have been obtained in two dimensions, we may auply
them in a qualitative fashion to three dimensions., The application follows easily
from the axisymmetric nature of the actual waves around the field in the proper
frame. There is a two~lobed disturbance field., The dividing line between the two
lobes trails the spacecraft antiparallel to the spacecraft velocity., The leading
edge of the disturbance (ahead of the spacecraft) is a cone whose angle with re-
spect to the field is given approximately by Eq. (44), Toward the sides of the
cone, the disturbance is still sharply defined, with much the same cone angle.
However, the trailing disturbance extends to infinity, srowing narrower at large
distances. A qualitative representation is shown in Figure 5. For the conditions
of Figure 1, this configuration applies to Alfven and whistler disturbances.,

Case 2: If the spacecraft velocity is along the field, shock-like disturbances
can occur. Inside the characteristics ahead of the spacecraft, there will be no
disturbance. The main disturbance itself consists of two lobes, associated with
the group velocity, directed across the field, Again, there will be a trailing wake,
If the velocity lies outside the characteristics, then there are no shock-like dis-
turbances,

In three dimensions, the disturbance is obtained by rotating the two-dimen-

sional result around the field. The result iz a conical leading disturbance with a

trailing wave field, The main disturtance is expected to lie between two mirror
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symmetry cones (for the case that U is parallel to E) with a smaller amplitude
disturbance extending to infinity in the wake. A qualitative representation is

shown in Figure 6. For the conditions of Figure 1, this configuration applies to

upper hybrid disturbances.

o O}

Figure 5. Qualitative View of the Three-Dimensional Limits
of the Wave Field for a Given Frequency and € * < 0. For
the plasma of Figure 1, this behavior is typical of the Alfven
and whistler regions
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I'igure 6. Qualitative View of the Three-Dimensional Limits
of the Wave Field for a Given Frequency and €, > 0. For
the plasma of Figure 1, this behavior is typical of the upper
hybrid region

7. DISCUSSION

We have investigated the properties of waves that are assumed to be produced
as the result of the interaction of a spacecraft with a cold plasma. We have found
that there are three distinct frequency regimes for which the waves can propagate
to large distances from the spacecraft and cause shock-like disturbances. These
waves may be roughly classified as Alfven waves, whistlers, and upper hybrid
waves. In the examples given in the paper, the Alfven and whist'er waves are
guided along the geomagnctic field, while the upper hybrid waves propagate across

the field,
The question of the production of these waves has not been dealt with. For the
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N purposes of this work, we have simply assumed the existence of a wave source IO,
and have treated the subsequent evolution of the waves. The production of Alfven T ORE.

5 wings is reasonably well understood. They result from the steady charge separa- ;\._‘:.:f\::

e tion required to maintain zero electric field, as seen by a comoving observer, in- RN

side a conductor moving across a magnetic field, The resulting electric field at
the surface of the conductor then propagates along the Alfven characteristics,

forming steady Alfven wings,
The production of higher frequency waves is not so easy to understand in any
detail. In general, the wave spectrum associated with the spacecraft interaction

should extend up to a frequency

v
»

.
W
W
3

w=U/L (136)

where L is a typical dimension of the spacecraft. For a spacecraft about 10 m
across, the maximum frequency is about 105 sec-l. If smaller scale structures,
such as wing tips and bay door edges (or, in general any structure with a small
radius of curvature), are considered, then the maximum frequency is raised per-
haps two orders of magnitude. So it appears that wave frequencies as high as the
whistler and upper hybrid regions are possible.

On the other hand, the formal result for cold plasmas is that the spacecraft
interaction produces only zero frequency waves as observed in the frame in which
the spacecraft is at rest, as mentioned in the discussion following Eq. (123).

While there are contributions to the steady structure from waves of all frequencies
[see Eq. (123)], it is not at all clear that waves will be produced that oscillate in
the spacecraft frame.

This makes clear an underlying assumption of the paper: While the propagation
of cold plasma waves has been treated in some detail, we rely on processes out- =

»
- Rl

.

«
¥

+
a

side of cold plasma physics to actually produce the waves., While little is known ~
theoretically about such wave production, there are two lines of attack. One is to :

)
2ot

2

measure the wave field near the spacecraft. Given a measured source, the pre-

()

sent formalism describes the subsequent evolution of the waves, The other is to
generate a self-consistent model of the steady state Shuttle environment and ana-
lyze it for dominant plasma instabilities and again compute the evolution. Both

types of effort are in early stages of development.
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Appendix

The source terms for the wave equations can be introduced in the usual way,
The Ampere-~Faraday Law is

-
vx (¥ x 8E) - €;;0E; + (amiw/c?iy (A1)
where J is the source current, The equations for the field fluctuations are

2 2 .

[8,% + (eple)a,” - €ploB, = €, 8B - (4m/c)[D,J, + (ep/€()d J,) (A2)

©2+52-€_)8B_=-€.(1+¢. 18288 + (4mc)a.J (A3)
x z P x H 0 “x y z'y

The equations for the amplitudes arand 8 are

2 2 . ce "l 2
(8, - l€g/€p)D,” - epla=€.(1+-€,"°5 “)B

canfe)[- (1 -€,/ep)p, I - (€/€,)8,d

, Ty -1 -€pl€nNeL /e ) T,)] (A4)

y
2,52 . N
®," ~ 9, -ep)ﬁ_ -6 o NN N
. _ . . _ 2
(am/c) (-(€y/€)9,d - (1 ep/eo)asz (ep€y/€g )GXJZ] (A5)
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In the text, the right-hand sides were treated as delta functions. A proper physi-

cal treatment requires that the current density be the delta function source. The

::. qualitative result is that the expressions in the text must be differentiated with re- _ A
:", spect to the appropriate variable (for example, z if the source term is aZJx) and > .
'_"_: then multiplied by the appropriate coefficient [for example, -(477/0)(1/60/€P) for
the leading term in Eq. (A4)].
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